Números Inteiros Relativos

NÚMEROS INTEIROS RELATIVOS










INTRODUÇÃO:

Observe que, no conjunto dos números naturais, a operação de subtração nem sempre é possivel

exemplos:

a) 5 - 3 = 2 (possível: 2 é um número natural)
b) 9 - 9 = 0 ( possível: 0 é um número natural)
c) 3 - 5 = ? ( impossível nos números naturais)

Para tonar sempre possível a subtração, foi criado o conjunto dos números inteiros relativos,

-1, -2, -3,.........

lê-se: menos um ou 1 negativo
lê-se: menos dois ou dois negativo
lê-se: menos três ou três negativo

Reunindo os números negativos, o zero e os números positivos, formamos o conjunto dos numeros inteiros relativos, que será representado por Z.

Z = { .....-3, -2, -1, 0, +1, +2, +3,......}

Importante: os números inteiros positivos podem ser indicados sem o sinal de +.

exemplo

a) +7 = 7
b) +2 = 2
c) +13 = 13
d) +45 = 45

Sendo que o zero não é positivo nem negativo

EXERCICIOS

1) Observe os números e diga:

-15, +6, -1, 0, +54, +12, -93, -8, +23, -72, +72

a) Quais os números inteiros negativos?
R: -15,-1,-93,-8,-72

b) Quais são os números inteiros positivos?
R: +6,+54,+12,+23,+72

2) Qual o número inteiro que não é nem positivo nem negativo?
R: É o zero

3) Escreva a leitura dos seguintes números inteiros:

a) -8 =(R: oito negativo)
b)+6 = (R: seis positivo)
c) -10 = (R: dez negativo)
d) +12 = (R: doze positivo)
e) +75 = (R: setenta e cinco positivo)
f) -100 = (R: cem negativo)

4) Quais das seguintes sentenças são verdadeiras?

a) +4 = 4 = ( V)
b) -6 = 6 = ( F)
c) -8 = 8 = ( F)
d) 54 = +54 = ( V)
e) 93 = -93 = ( F )


5) As temperaturas acima de 0°C (zero grau) são representadas por números positivos e as temperaturas abaixo de 0°C, por números negativos. Represente a seguinte situação com números inteiros relativos:

a) 5° acima de zero = (R: +5)
b) 3° abaixo de zero = (R: -3)
c) 9°C abaixo de zero= (R: -9)
d) 15° acima de zero = ( +15)



REPRESENTAÇÃO DOS NÚMEROS INTEIROS NA RETA



Vamos traçar uma reta e marcar o ponto 0. À direta do ponto 0, com uma certa unidade de medida, assinalemos os pontos que correspondem aos números positivos e à esquerda de 0, com a mesma unidade, assinalaremos os pontos que correspondem aos números negativos.



_I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6

exercícios

1) Escreva os números inteiros:

a) compreendidos entre 1 e 7 (R: 2,3,4,5,6)
b) compreendidos entre -3 e 3 (R: -2,-1,0,1,2)
c) compreendidos entre -4 e 2 ( R: -3, -2, -1, 0, 1)
d) compreendidos entre -2 e 4 (R: -1, 0, 1, 2, 3 )
e) compreendidos entre -5 e -1 ( R: -4, -3, -2)
f) compreendidos entre -6 e 0 (R: -5, -4, -3, -2, -1)

2) Responda:

a) Qual é o sucessor de +8? (R: +9)
b) Qual é o sucessor de -6? (R: -5)
c) Qual é o sucessor de 0 ? (R: +1)
d) Qual é o antecessor de +8? (R: +7)
e) Qual é o antecessor de -6? ( R: -7)
f) Qual é o antecessor de 0 ? ( R: -1)

3) Escreva em Z o antecessor e o sucessor dos números:

a) +4 (R: +3 e +5)
b) -4 (R: -5 e - 3)
c) 54 (R: 53 e 55 )
d) -68 (R: -69 e -67)
e) -799 ( R: -800 e -798)
f) +1000 (R: +999 e + 1001)



NÚMEROS OPOSTOS E SIMÉTRICOS


Na reta numerada, os números opostos estão a uma mesma distancia do zero.


-I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6


Observe que cada número inteiro, positivo ou negativo, tem um correspondente com sinais deferentes

exemplo

a) O oposto de +1 é -1.
b) O oposto de -3 é +3.
c) O oposto de +9 é -9.
d) O oposto de -5 é +5.

Obsevação: O oposto de zero é o próprio zero.

EXERCÍCIOS

1) Determine:

a) O oposto de +5 = (R:-5)
b) O oposto de -9 = (R: +9)
c) O oposto de +6 = (R: -6)
d) O oposto de -6 = (R: +6)
e) O oposto de +18 = (R: -18)
f) O oposto de -15 = (R: +15)
g) O oposto de +234= (R: -234)
h) O oposto de -1000 = (R: +1000)

Comentários

Postagens mais visitadas deste blog